

Proyecto/Guía docente de la asignatura

Asignatura	Fundamentos de Matemáticas		
Materia	Matemáticas		
Módulo	Materias de Formación Básica		
Titulación	Grado en Ingeniería en Diseño Industrial y Desarrollo de Producto		
Plan	448 Código 42422		
Periodo de impartición	Anual	Tipo/Carácter	FB
Nivel/Ciclo	Grado	Curso	1º
Créditos ECTS	9		
Lengua en que se imparte	Español		
Profesor/es responsable/s	Juan A. Calzada Delgado		
Datos de contacto (E-mail, teléfono)	E-mail: jacalzada@uva.es Tfno.: 983 42 34 50		
Departamento	Matemática Aplicada		
Fecha de revisión por el Comité de Título	26/06/2024		

1. Situación / Sentido de la Asignatura

1.1 Contextualización

Fundamentos de Matemáticas es una asignatura anual que se imparte a lo largo del primer curso de la titulación. En ella se desarrollan las nociones básicas del Cálculo Diferencial e Integral en una variable, del Álgebra Lineal y de las Ecuaciones Diferenciales Ordinarias.

1.2 Relación con otras materias

Por su carácter básico, tanto las capacidades conseguidas como los contenidos de esta asignatura se utilizan en múltiples asignaturas del Grado.

1.3 Prerrequisitos

Se recomienda tener conocimientos sobre:

Operatoria elemental. Geometría Básica. Números complejos. Polinomios. Introducción al Álgebra Lineal. Funciones Elementales. Operaciones elementales con límites y derivadas de funciones de una variable. (Todos ellos se encuentran en los contenidos de ESO y Bachillerato).

Universidad de Valladolid

2. Competencias

2.1 Generales

- CG1. Capacidad de análisis y síntesis. Ser capaz de extraer los aspectos esenciales de un texto o conjunto de datos para obtener conclusiones pertinentes, de manera clara, concisa y sin contradicciones, que permiten llegar a conocer sus partes fundamentales y establecer generalizaciones. Ser capaz de relacionar conceptos y adquirir una visión integrada, evitando enfoques fragmentados.
- CG2. Capacidad de organización y planificación del tiempo. Esta competencia implica la organización personal y grupal de las tareas a realizar, considerando el tiempo que se requiere para cada una de ellas y el orden en que deben ser realizadas, con el objetivo de alcanzar las metas propuestas. El estudiante adquirirá un hábito y método de estudio que le permita establecer un calendario en el que queden reflejados los tiempos asignados a cada tarea.
- CG3. Capacidad de expresión oral. Requiere ser capaz de: 1) seguir un orden correcto, 2) expresarse de forma clara y precisa, 3) ajustarse al tiempo establecido, 4) mantener un volumen adecuado para ser escuchado por toda la audiencia, 5) permanecer derecho, relajado y seguro, y estableciendo contacto visual con la audiencia, 6) Usar eficazmente las herramientas tecnológicas adecuadas, y 7) responder a las preguntas que le formulen.
- CG4. Capacidad de expresión escrita. Requiere ser capaz de: 1) elaborar informes siguiendo las normas establecidas para su presentación, 2) estructurar correctamente el trabajo, 3) utilizar una ortografía y sintaxis correctas, 4) usar terminología y notaciones adecuadas, 5) utilizar tablas y gráficos, en su caso, acompañados de una breve descripción aclaratoria, 6) hacer las referencias necesarias.
- CG5. Capacidad para aprender y trabajar de forma autónoma. Ser capaz de desarrollar una estrategia personal de formación, de evaluar el propio aprendizaje y encontrar los recursos necesarios para mejorarlo. Ser capaz de detectar las deficiencias en el propio conocimiento, y superarlas mediante la reflexión crítica. Ser capaz de utilizar metodologías de autoaprendizaje eficiente para la actualización de nuevos conocimientos y avances científicos/tecnológicos. Ser capaz de hacer una búsqueda bibliográfica por medios diversos, de seleccionar el material relevante y de hacer una lectura comprensiva y crítica del mismo.
- CG6. Capacidad de resolución de problemas. Ser capaz de: 1) identificar el problema organizando los datos pertinentes, 2) delimitar el problema y formularlo de manera clara y precisa, 3) plantear de forma clara las distintas alternativas y justificar la selección del proceso seguido para obtener la solución, 4) ser crítico con las soluciones obtenidas y extraer las conclusiones pertinentes acordes con la teoría.
- CG7. Capacidad de razonamiento crítico/análisis lógico. Esta competencia requiere ser capaz de analizar cada una de las situaciones planteadas, y tomar decisiones lógicas desde un punto de vista racional sobre las ventajas e inconvenientes de las distintas posibilidades de solución, de los distintos procedimientos para conseguirlas y de los resultados obtenidos.
- CG8. Capacidad para aplicar los conocimientos a la práctica. Desarrollará la capacidad de analizar las limitaciones y los alcances de las técnicas y herramientas a utilizar, reconociendo los campos de aplicación de cada una de ellas y aprovechando toda la potencialidad que ofrecen, combinándolas y/o realizando modificaciones de modo que se optimice su aplicación.
- CG9. Capacidad para trabajar en equipo de forma eficaz. Esta capacidad requiere: 1) Asumir como propios los objetivos del grupo, sean estos relativos a una única o más disciplinas, y actuar para alcanzarlos, respetando los compromisos (tareas y plazos) contraídos, 2) Expresar las ideas con claridad, comprendiendo la dinámica del debate, efectuando intervenciones y tomando decisiones que integren las distintas opiniones y puntos de vista para alcanzar consensos, 3) Promover una actitud participativa y colaborativa entre los integrantes del equipo.
- CG13. Capacidad para actuar éticamente y con compromiso social. Esta competencia requiere desarrollar una educación en valores, incidiendo en la igualdad entre sexos, y en el respeto a las diferentes culturas, razas, ideologías y lenguas que les permitan identificar las connotaciones éticas en sus decisiones en el desempeño profesional. Utilizando de forma equilibrada y compatible la tecnología, la economía y la sostenibilidad en el contexto local y global.
- CG14. Capacidad de evaluar. Desarrollará la capacidad de analizar el planteamiento y la propuesta presentada, estableciendo razonablemente la valoración de la solución propuesta y comparando el resultado obtenido con el esperado para realizar una valoración de la justificación y un análisis crítico de los resultados.

2.2 Específicas

CE-B-1. Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra lineal; geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos; algorítmica numérica.

CE-B-2. Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre estadística y optimización.

CE-F-5. Comprender y aplicar conocimientos de Tecnologías de la Información.

3. Objetivos

- Aplicar los conceptos y las técnicas básicas del Álgebra Lineal, del Cálculo Diferencial e Integral, de las Ecuaciones Diferenciales, de los Métodos y Algoritmos Numéricos y de la Estadística en problemas del campo de la Ingeniería.
- Aplicar de modo eficiente los contenidos estudiados en la resolución de problemas.
- Argumentar el método para resolver cada problema planteado.
- Analizar y ser crítico ante las soluciones que obtenga al resolver problemas.
- Analizar y sintetizar los diferentes conceptos desarrollados.

4. Contenidos y/o bloques temáticos

Bloque: Cálculo diferencial e integral de funciones reales de una variable.

Carga de trabajo en créditos ECTS: 3.6

a. Contextualización y justificación

En este bloque se imparten las nociones básicas del Cálculo Diferencial e Integral de funciones reales de una variable. Estos conceptos serán de amplia aplicación en diferentes asignaturas de la titulación.

b. Objetivos de aprendizaje

- Aplicar los conceptos y las técnicas básicas del Cálculo Diferencial e Integral en problemas del campo de la Ingeniería.
- Aplicar de modo eficiente los contenidos estudiados en la resolución de problemas.
- Argumentar el método para resolver cada problema planteado.
- Analizar y ser crítico ante las soluciones que obtenga al resolver problemas.
- Analizar y sintetizar los diferentes conceptos desarrollados.

c. Contenidos

Funciones. Límites y continuidad. Cálculo Diferencial. Cálculo Integral.

d. Métodos docentes

- Clase expositiva
- Resolución de ejercicios y problemas
- Aprendizaje basado en problemas
- Aprendizaje cooperativo

Los contenidos de este bloque se desarrollarán a lo largo de 19 horas de clases teóricas (T), 12 horas de clases prácticas en aula (A) y 5 clases de laboratorio (L).

f. Evaluación

e. Plan de trabajo

Evaluación continua y evaluación basada en prácticas. Evaluación final.

g Material docente

g.1 Bibliografía básica

- Burgos, J. de: Fundamentos matemáticos de la ingeniería (álgebra y cálculo): 162 problemas útiles. García Maroto Editores, Madrid, 2009.
- Burgos, J. de: Cálculo de una variable real: (enunciados, respuestas y justificación). García Maroto Editores, 2010.
- Martín P., García, A., Getino, J. y González, A.B.: Cálculo para ingenieros. Vol. 1. Funciones de una variable. Delta Publicaciones, 2014.

g.2 Bibliografía complementaria

 Galindo, F., Sanz, J., Tristán, L.A.: Guía práctica de Cálculo Infinitesimal en una variable real. Thomson, 2003.

g.3 Otros recursos telemáticos (píldoras de conocimiento, blogs, videos, revistas digitales, cursos masivos (MOOC), ...)

Se pondrá a disposición de los alumnos el material necesario para el desarrollo de cada tema.

h. Recursos necesarios

Pizarra, cañón de proyección y Moodle.

i. Temporalización

CARGA ECTS	PERIODO PREVISTO DE DESARROLLO
3.6	19 horas de clases teóricas (T), 12 horas de clases prácticas en aula (A) y 5 clases de laboratorio (L).

Bloque: Álgebra Lineal

Carga de trabajo en créditos ECTS:

a. Contextualización y justificación

En este bloque se imparten las nociones básicas del Álgebra Lineal.

b. Objetivos de aprendizaje

- Aplicar los conceptos y las técnicas básicas del Álgebra Lineal en problemas del campo de la Ingeniería.
- Aplicar de modo eficiente los contenidos estudiados en la resolución de problemas.
- Argumentar el método para resolver cada problema planteado.
- Analizar y ser crítico ante las soluciones que obtenga al resolver problemas.
- Analizar y sintetizar los diferentes conceptos desarrollados.

c. Contenidos

Matrices. Determinantes y sistemas lineales. Espacios vectoriales y aplicaciones lineales. Diagonalización. Espacios euclídeos y formas cuadráticas.

d. Métodos docentes

- Clase expositiva
- Resolución de ejercicios y problemas
- Aprendizaje basado en problemas
- Aprendizaje cooperativo

e. Plan de trabajo

Los contenidos de este bloque se desarrollarán a lo largo de 18 horas de clases teóricas (T), 11 horas de clases prácticas en aula (A) y 7 clases de laboratorio (L).

f. Evaluación

Evaluación continua y evaluación basada en prácticas. Evaluación final.

g Material docente

g.1 Bibliografía básica

- Burgos, J. de: Álgebra Lineal y Geometría Cartesiana. 3º edición. McGraw-Hill, 2006.
- Burgos, J. de: Álgebra Lineal. 80 Problemas útiles. García Maroto Editores, 2007.
- Burgos, J. de: Fundamentos matemáticos de la ingeniería (álgebra y cálculo): 162 problemas útiles. García Maroto Editores, Madrid, 2009.
- Rojo, J.: Álgebra Lineal. Editorial McGraw-Hill, 2001.

g.2 Bibliografía complementaria

Rojo, J., Martín, I. Ejercicios y problemas de Álgebra Lineal. McGraw-Hill, 1994.

g.3 Otros recursos telemáticos (píldoras de conocimiento, blogs, videos, revistas digitales, cursos masivos (MOOC), ...)

Se pondrá a disposición de los alumnos el material necesario para el desarrollo de cada tema.

h. Recursos necesarios

Pizarra, cañón de proyección y Moodle.

i. Temporalización

CARGA ECTS	PERIODO PREVISTO DE DESARROLLO
3.6	17 horas de clases teóricas (T), 12 horas de clases prácticas en aula (A) y 7 clases de laboratorio (L).

Bloque: Ecuaciones diferenciales

Carga de trabajo en créditos ECTS: 1.8

a. Contextualización y justificación

En este bloque de la asignatura se imparten las nociones básicas de las ecuaciones diferenciales ordinarias.

b. Objetivos de aprendizaje

- Aplicar los conceptos y las técnicas básicas de las Ecuaciones Diferenciales en problemas del campo de la Ingeniería.
- Aplicar de modo eficiente los contenidos estudiados en la resolución de problemas.
- Argumentar el método para resolver cada problema planteado.
- Analizar y ser crítico ante las soluciones que obtenga al resolver problemas.
- Analizar y sintetizar los diferentes conceptos desarrollados.

c. Contenidos

Ecuaciones diferenciales de primer orden. Ecuaciones diferenciales de orden n con coeficientes constantes. Sistemas de ecuaciones diferenciales lineales de orden uno con coeficientes constantes.

d. Métodos docentes

- Clase expositiva
- Resolución de ejercicios y problemas
- Aprendizaje basado en problemas
- Aprendizaje cooperativo

e. Plan de trabajo

Los contenidos de este bloque se desarrollarán a lo largo de 9 horas de clases teóricas (T), 6 horas de clases prácticas en aula (A) y 3 clases de laboratorio (L).

f. Evaluación

Evaluación continua y evaluación basada en prácticas. Evaluación final.

g Material docente

g.1 Bibliografía básica

- Alonso, A.I., Álvarez, J. y Calzada, J.A., Ecuaciones diferenciales ordinarias: ejercicios y problemas. Delta publicaciones, 2008.
- Novo, S., Obaya, R., Rojo, J., Ecuaciones y sistemas diferenciales. McGraw-Hill, 1995.
- Zill, D.G: Ecuaciones diferenciales con aplicaciones de modelado. Thomson, 2005.

g.2 Bibliografía complementaria

• Nagle, R.K. y Saff, E.B.: Fundamentos de ecuaciones diferenciales. Addison Wesley, 1992.

g.3 Otros recursos telemáticos (píldoras de conocimiento, blogs, videos, revistas digitales, cursos masivos (MOOC), ...)

Se pondrá a disposición de los alumnos el material necesario para el desarrollo de cada tema.

h. Recursos necesarios

Pizarra, cañón de proyección y Moodle.

i. Temporalización

CARGA ECTS	PERIODO PREVISTO DE DESARROLLO
1.8	9 horas de clases teóricas (T), 6 horas de clases prácticas en aula (A) y 3 clases de laboratorio (L).

5. Métodos docentes y principios metodológicos

Clase expositiva. Resolución de ejercicios y problemas. Aprendizaje Basado en Problemas. Aprendizaje Cooperativo.

Universidad de Valladolid

6. Tabla de dedicación del estudiante a la asignatura

ACTIVIDADES PRESENCIALES o PRESENCIALES A DISTANCIA ⁽¹⁾	HORAS	ACTIVIDADES NO PRESENCIALES	HORAS
Clases teóricas (T)	45	Estudio y trabajo autónomo individual	105
Clases prácticas (A)	30	Estudio y trabajo autónomo grupal	30
Laboratorios (L)	15		
Total presencial	90	Total no presencial	135
	•	TOTAL presencial + no presencial	225

⁽¹⁾ Actividad presencial a distancia es cuando un grupo sigue una videoconferencia de forma síncrona a la clase impartida por el profesor.

7. Sistema y características de la evaluación

INSTRUMENTO/PROCEDIMIENTO	PESO EN LA NOTA FINAL	OBSERVACIONES
Evaluación continua y evaluación basada en prácticas	20-70 %	
Evaluación final	30-80 %	

CRITERIOS DE CALIFICACIÓN

Convocatoria ordinaria:

Evaluación continua y evaluación basada en prácticas: 20-70%

o Evaluación final: 30-80%

Para superar la asignatura es necesario sumar al menos 5 puntos (sobre 10).

• Convocatoria extraordinaria:

Evaluación continua y evaluación basada en prácticas: 20-70%

Evaluación final: 30-80%

Para superar la asignatura es necesario sumar al menos 5 puntos (sobre 10).

(*) Se entiende por convocatoria extraordinaria la segunda convocatoria.

Art 35.4 del ROA 35.4. La participación en la convocatoria extraordinaria no quedará sujeta a la asistencia a clase ni a la presencia en pruebas anteriores, salvo en los casos de prácticas externas, laboratorios u otras actividades cuya evaluación no fuera posible sin la previa realización de las mencionadas pruebas.

https://secretariageneral.uva.es/wp-content/uploads/VII.2.-Reglamento-de-Ordenacion-Academica.pdf

8. Consideraciones finales

Este programa se adaptará a las horas presenciales reales de cada curso académico.

El profesor responsable explicará en la primera clase del curso los detalles de la adaptación del sistema de calificaciones al grupo y curso académico correspondiente.

