

Proyecto/Guía docente de la asignatura

Asignatura	SEÑALES Y SISTEMAS A	LIDIOVISUALES	
Materia			
Materia	SEÑALES Y SISTEMAS		
Módulo	MATERIAS ESPECÍFICAS DE LA MENCIÓN EN SISTEMAS DE TELECOMUNICACIÓN		
Titulación	GRADO EN INGENIERÍA DE TECNOLOGÍAS ESPECÍFICAS DE TELECOMUNICACIÓN (MENCIÓN EN SISTEMAS DE TELECOMUNICACIÓN)		
Plan	512	Código	46634
Periodo de impartición	1er. CUATRIMESTRE	Tipo/Carácter	OPTATIVA DE LA MENCIÓN
Nivel/Ciclo	GRADO	Curso	40
Créditos ECTS	6 ECTS		
Lengua en que se imparte	CASTELLANO		
Profesor responsable	RODRIGO DE LUIS LARA DEL VAL		
Datos de contacto	Rodrigo de Luis Despacho: 2D003 983 423000 ext. 5533 email: rodrigo.luis@tel.uva.es Lara del Val Despacho: 2L026 983 185803 ext. 5803 email: lara.val@uva.es		
Departamento	TEORÍA DE LA SEÑAL, COMUNICACIONES E INGENIERÍA TELEMÁTICA		
Fecha de revisión por el Comité de Título	27 de junio de 2025		

1. Situación / Sentido de la Asignatura

1.1 Contextualización

Entre las actividades profesionales del ingeniero/ingeniero técnico de telecomunicación destaca el desarrollo de proyectos que involucren la generación, propagación y manipulación de señales audiovisuales a distintos niveles, desde el procesado para su acondicionamiento, hasta el diseño de sistemas y la realización de proyectos para su distribución. Existe por tanto una necesidad de formar profesionales que sean capaces de acometer estas tareas de forma eficaz. La asignatura "Señales y Sistemas Audiovisuales" proporciona los conocimientos básicos sobre este tipo de señales, estableciendo los fundamentos para la formación específica en actividades que involucren su procesado.

1.2 Relación con otras materias

La asignatura se encuentra enmarcada en la materia "Señales y Sistemas" dentro del Bloque "Materias Específicas de la Mención en Sistemas de Telecomunicación". Este bloque consta de cuatro asignaturas: "Tratamiento de Señales" en el segundo cuatrimestre del tercer curso, "Tratamiento Avanzado de Señales" en el primer cuatrimestre del cuarto curso, "Señales y Sistemas Audiovisuales" en el primer cuatrimestre del cuarto curso, y "Tratamiento de Señales Biomédicas" en el segundo cuatrimestre del cuarto curso. Dentro de esta materia, la asignatura mantiene una estrecha relación con "Tratamiento de Señales" y "Tratamiento Avanzado de Señales", que constituyen el punto de partida para las técnicas de procesado de audio e imagen. Además, la asignatura "Tratamiento de Señales Biomédicas" complementa a la asignatura "Señales y Sistemas Audiovisuales" al tratar aplicaciones específicas de tratamiento de imágenes y señales unidimensionales.

Por otra parte, esta materia se apoya en las competencias generales y específicas básicas fomentadas en el Bloque de Materias Instrumentales para facilitar la adquisición de competencias específicas básicas en el ámbito de la imagen y el sonido. Así, los conceptos introducidos en las materias "Matemáticas" y "Física" resultan fundamentales para una correcta comprensión de la asignatura.

La asignatura Sistemas Lineales, incluida en la materia "Fundamentos de Señales y Sistemas" proporciona los fundamentos básicos sobre el tratamiento de señal y sus herramientas, centrándose fundamentalmente en los sistemas lineales e invariantes en el tiempo y en las operaciones en los dominios temporal y frecuencial. El conocimiento de estos fundamentos es de vital importancia de cara a la comprensión de los conceptos sobre procesado de sonido e imagen introducidos en las asignaturas de la materia "Señales y Sistemas" en general y esta asignatura en particular. Algunos conceptos de interés sobre la caracterización de señales aleatorias se presentan con más detalle en la asignatura Señales Aleatorias y Ruido, incluida en la misma materia.

1.3 Prerrequisitos

Si bien no existe formalmente ningún requisito previo para cursar esta asignatura, es altamente recomendable cursar o haber cursado las asignaturas de las materias "Matemáticas" del "Bloque de materias instrumentales" y la materia "Fundamentos de Señales y Sistemas" del "Bloque de Materias Básicas de Telecomunicaciones". Por último, resulta importante dominar los contenidos de la asignatura Tratamiento de Señales, enmarcada en la misma materia que la asignatura.

2. Competencias

2.1 Generales

- GB1 Capacidad de razonamiento, análisis y síntesis.
- GBE2 Capacidad para aplicar métodos analíticos y numéricos para el análisis de problemas en el ámbito de la ingeniería técnica de Telecomunicación.
- GBE3 Capacidad para resolver problemas con iniciativa, creatividad y razonamiento crítico.
- GBE4 Capacidad para diseñar y llevar a cabo experimentos, así como analizar e interpretar datos.
- GC1 Capacidad de organización, planificación y gestión del tiempo.
- GC2 Capacidad para comunicar, tanto por escrito como de forma oral, conocimientos, procedimientos, resultados e ideas relacionadas con las telecomunicaciones y la electrónica.

2.2 Específicas

- ST6 Capacidad para analizar, codificar, procesar y transmitir información multimedia empleando técnicas de procesado analógico y digital de señal.
- ST5 Capacidad para evaluar las ventajas e inconvenientes de diferentes alternativas tecnológicas de despliegue o implementación de sistemas de comunicaciones, desde el punto de vista del espacio de la señal, las perturbaciones y el ruido y los sistemas de modulación analógica y digital.
- ST1 Capacidad para construir, explotar y gestionar las redes, servicios, procesos y aplicaciones de telecomunicaciones, entendidas éstas como sistemas de captación, transporte, representación, procesado, almacenamiento, gestión y presentación de información multimedia, desde el punto de vista de los sistemas de transmisión.
- SS1 Capacidad para simular, modelar e implementar sistemas de Comunicaciones mediante lenguajes de programación y arquitecturas de procesado de señal en tiempo real.

3. Objetivos

Objetivos conceptuales:

- Conocer y comprender la naturaleza y los fundamentos de las señales asociadas a la voz, imagen y video
- Comprender y aplicar los fundamentos del tratamiento de señales a señales de voz, imagen y vídeo.
- Conocer y entender las técnicas básicas de procesado de voz, tales como el análisis y síntesis.
- Conocer y comprender las técnicas básicas de procesado de imagen y vídeo, tales como el realce, restauración, reconstrucción y compresión.

Objetivos transversales:

- Lograr una capacidad para la resolución de problemas nuevos a partir de los conocimientos previos y las herramientas a su alcance (toma de decisiones).
- Adquirir una capacidad para resolver problemas con iniciativa, creatividad y razonamiento crítico (intuición matemática).

4. Contenidos y/o bloques temáticos

Bloque 1: Procesado de la señal de voz

Carga de trabajo en créditos ECTS:

2

a. Contextualización y justificación

Este primer bloque de la asignatura, Procesado de Señal de Voz, consta de 4 temas donde se analizan los fundamentos del análisis, modelado y síntesis de la señal de voz.

En el tema 1 se introduce el sonido y su propagación, para a continuación particularizar en la señal de voz, estudiando el sistema de producción de voz y los fundamentos psicoacústicos de la audición. En el tema 2 se introducen las herramientas fundamentales para el análisis y síntesis de la señal de voz. En el tema 3, se introducen las herramientas básicas para la codificación de voz, y finalmente en el tema 4 se introducen unas nociones sobre reconocimiento de voz.

b. Objetivos de aprendizaje

Al finalizar este bloque temático, el alumno deberá ser capaz de:

- Conocer los principios de la propagación de una onda de sonido.
- Comprender las peculiaridades de la señal de voz a partir del conocimiento del mecanismo de producción de sonidos en el ser humano.
- Conocer y comprender el proceso de percepción de sonidos en el ser humano.
- Comprender la necesidad de los mecanismos de análisis de la señal de voz como parte fundamental de los sistemas de procesado de voz.
- Tener una noción de las principales técnicas de análisis y síntesis de la señal de voz.
- Tener nociones básicas sobre las técnicas de codificación de voz.

c. Contenidos

TEMA 1: La voz humana y la audición

- Características de la señal de voz
- Producción, percepción y caracterización fono-acústica
- Teoría acústica para la generación de la voz
- La audición. Fundamentos psicoacústicos

TEMA 2 Análisis de la señal de voz

- Dependencia temporal del procesado de voz
- Técnicas de procesado en el dominio temporal
- Técnicas de procesado en el dominio frecuencial

TEMA 3 Codificación de la señal de voz

- Codificación en el dominio temporal
- Codificación en el dominio frecuencial

TEMA 4 Reconocimiento de voz

- Introducción
- Detección del periodo de conversación
- Sistemas de reconocimiento de palabras

d. Métodos docentes

- Clases magistrales.
- Prácticas en LabVIEW.

e. Plan de trabajo

Véase el Anexo I.

f. Evaluación

La evaluación se basará en:

- Examen final (30%)
- Prácticas de laboratorio (40%)
- Trabajo teórico (30%)

g Material docente

g.1 Bibliografía básica

L.R. Rabiner and R.W. Schafer, Digital Processing of Speech Signals, Prentice-Hall, 1978.

 $\underline{https://buc-uva.alma.exlibrisgroup.com/leganto/public/34BUC_UVA/citation/5046986990005774?auth=SAML}$

- L.R. Rabiner and R.W. Schafer, Introduction to Digital Speech Processing. Now Publishers Inc. 2007
- L.R. Rabiner and R.W. Schafer, Theory and Applications of Digital Speech Processing, Pearson Education, 2011.

 $\underline{https://buc-uva.alma.exlibrisgroup.com/leganto/public/34BUC_UVA/citation/5046995320005774?auth=SAML-citation/soldersearches. All the results of the resu$

g.2 Bibliografía complementaria

- Alan V. Oppenheim and Ronald W. Schafer, Discrete-Time Signal Processing, Prentice-Hall 1989-2010.
 https://buc-uva.alma.exlibrisgroup.com/leganto/public/34BUC_UVA/citation/5047001350005774?auth=SAML
- J. Deller, J. Proakis, J. Hansen, Discrete-Time Processing of Speech Signals. John Wiley & Sons, 1999.
 https://buc-uva.alma.exlibrisgroup.com/leganto/public/34BUC_UVA/citation/5047003850005774?auth=SAML
- g.3 Otros recursos telemáticos (píldoras de conocimiento, blogs, videos, revistas digitales, cursos masivos (MOOC), ...)

h. Recursos necesarios

Los proporcionados por el profesor en la página oficial del Campus Virtual de la asignatura.

i. Temporalización

CARGA ECTS	PERIODO PREVISTO DE DESARROLLO
2	Semanas 1 a 5

Bloque 2: Procesado de imagen

Carga de trabajo en créditos ECTS:

a. Contextualización y justificación

El segundo bloque de la asignatura se dedica al procesado de imagen, y consta de 5 temas que recogen gran parte de las ideas básicas contenidas en cualquier manual de referencia en el tratamiento digital de imágenes.

El tema 5 introduce el concepto de imagen digital y revisa fundamentos básicos de luz, colorimetría y el sistema visual humano. A continuación, el tema 6 plantea y desarrolla los fundamentos de los conceptos de filtrado, realce y restauración de imágenes. Se repasa aquí también una herramienta básica en el tratamiento digital de imágenes: la transformada de Fourier bidimensional. El tema 7 introduce conceptos más avanzados de procesado de imagen como son los de segmentación y operaciones morfológicas, junto con sus técnicas más relevantes. El tema 8 está dedicado a la compresión de imagen y vídeo, revisándose técnicas basadas en la codificación de pixel, de forma de onda y en el dominio transformado e introduciendo los conceptos básicos del estándar JPEG. Se presenta a continuación el problema de la compresión de vídeo, y los elementos básicos del estándar MPEG. Finalmente, el tema 9 introduce algunas nociones sobre el uso de sistemas basados en aprendizaje automático o inteligencia artificial en procesado de imagen, centrándose en aplicaciones como la detección, clasificación y segmentación, así como el uso de la IA generativa en imágenes.

b. Objetivos de aprendizaje

Al finalizar este bloque temático, el alumno deberá ser capaz de:

Universidad de Valladolid

- Conocer las características principales de la luz como radiación electromagnética y de las magnitudes asociadas a su percepción.
- Entender el funcionamiento del sistema visual humano y su influencia en la interpretación de imágenes estáticas y en movimiento.
- Conocer y manejar las herramientas básicas de procesado lineal para imágenes de dos o más dimensiones, especialmente el análisis de Fourier.
- Conocer las diferentes técnicas empleadas en el realce de imágenes.
- Entender el modelo de degradación y restauración de imágenes.
- Comprender las diferencias técnicas empleadas en la restauración de imágenes.
- Comprender los fundamentos de la teoría del color en lo referente a la representación de imágenes.
- Reconocer las técnicas y los estándares más usados en la compresión de imagen y video.

c. Contenidos

TEMA 5. Introducción al procesado de imagen

- La imagen digital
- Propósitos del procesado de imagen
- Luz y color
- Percepción visual

TEMA 6. Filtrado, realce y restauración de imágenes

- Introducción
- Operaciones punto a punto
- Operaciones espaciales
- Operaciones en el dominio transformado
- Restauración de imagen

TEMA 7. Segmentación y operaciones morfológicas

- Introducción y conceptos básicos
- Segmentación de imagen
- Operaciones morfológicas

TEMA 8: Compresión de imagen y vídeo

- Introducción y conceptos básicos
- Compresión de imagen
- Compresión de vídeo

TEMA 9: IA en procesado de imagen

- IA para detección, clasificación y segmentación
- IA generativa

d. Métodos docentes

- Clases magistrales.
- Clases de problemas y resolución de casos de interés práctico.
- Ejercicios y prácticas con Matlab.

e. Plan de trabajo

Véase el Anexo I.

f. Evaluación

La evaluación se basará en:

- Examen final (30%)
- Prácticas de laboratorio (70%)

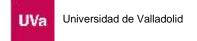
g Material docente

g.1 Bibliografía básica

- R. C. Gonzales, R. E. Woods, *Digital Image Processing*, 3^a Ed., Addison Wesley, 2007.
 https://buc-uva.alma.exlibrisgroup.com/leganto/public/34BUC_UVA/citation/5046919850005774?auth=SAML
- A. K. Jain, Fundamentals of digital image processing, Englewood Cliffs (New Jersey): Prentice-Hall, 1989.
 https://buc-uva.alma.exlibrisgroup.com/leganto/public/34BUC_UVA/citation/5046925510005774?auth=SAML
- Image Processing Toolbox User's Guide R2016a, The MathWorks, Inc., 2016.

g.2 Bibliografía complementaria

- J. C. Russ, The Image Processing Handbook, 2^a Ed., IEEE Press, 1995.
 https://buc-uva.alma.exlibrisgroup.com/leganto/public/34BUC_UVA/citation/5046944370005774?auth=SAML
- D. S. Taubman, M. W. Marcellin (eds.), JPEG 2000: Image compression fundamentals, standards, and practice, Kluwer Academic Publishers, 2002.
 - https://buc-uva.alma.exlibrisgroup.com/leganto/public/34BUC_UVA/citation/5046958010005774?auth=SAML
- Bovik (ed.), Handbook of image & video processing, 2^a Ed., Elsevier Academic Press, 2005 https://buc-uva.alma.exlibrisgroup.com/leganto/public/34BUC UVA/citation/5046938800005774?auth=SAML


g.3 Otros recursos telemáticos (píldoras de conocimiento, blogs, videos, revistas digitales, cursos masivos (MOOC), ...)

h. Recursos necesarios

Los proporcionados por el profesor en la página oficial del Campus Virtual de la asignatura.

i. Temporalización

CARGA ECTS	PERIODO PREVISTO DE DESARROLLO	
4	Semanas 6 a 15	

5. Métodos docentes y principios metodológicos

Métodos docentes: clases magistrales, asignación de problemas, clases de resolución de problemas, prácticas de laboratorio, tutorías personalizadas.

Principios metodológicos: aprendizaje basado en problemas, aprendizaje por competencias.

6. Tabla de dedicación del estudiante a la asignatura

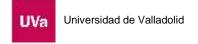
ACTIVIDADES PRESENCIALES O PRESENCIALES A DISTANCIA (1)	HORAS	ACTIVIDADES NO PRESENCIALES	HORAS
Clases teóricas (T/M)	15	Estudio y trabajo autónomo individual	90
Clases prácticas en el aula (A)	15	Laboratorios (L)	0
Laboratorios (L)	30		
Prácticas externas, clínicas o de campo	0		
Seminarios (S)	0		
Tutorías grupales (TG)	0		
TOTAL presencial	60		90
TOTAL presencial + no presencial			

(1) Actividad presencial a distancia es cuando un grupo sigue una videoconferencia de forma síncrona a la clase impartida por el profesor.

7. Sistema y características de la evaluación

INSTRUMENTO/PROCEDIMIENTO	PESO EN LA NOTA FINAL	OBSERVACIONES
Examen final del Bloque I	10%	(95/ 1/ 30/
Prácticas de laboratorio del Bloque I	13.3%	
Trabajo teórico del Bloque I	10%	
Examen final del Bloque II	20%	
Prácticas de laboratorio del Bloque II	46.7%	

CRITERIOS DE CALIFICACIÓN


• Convocatoria ordinaria:

Explicados en la tabla anterior

Convocatoria extraordinaria

Se mantiene el mismo procedimiento de evaluación que en la convocatoria ordinaria.

8. Consideraciones finales

