

Universidad de Valladolid

Proyecto/Guía docente de la asignatura

Project/Course Syllabus

Asignatura Course	Energías hidráulicas, eólicas y marinas			
Materia Subject area	Nuevas tecnologías basadas en termofluidos para la descarbonización			
Módulo <i>Modul</i> e	Nuevas Tecnologías basadas en termofluidos para la descarbonización			
Titulación Degree Programme	MÁSTER EN ENERGÍA: APLI TRANSICIÓN ENERGÉTICA	MÁSTER EN ENERGÍA: APLICACIONES DE TERMOFLUIDOS PARA LA TRANSICIÓN ENERGÉTICA		
Plan Curriculum	728 Código 55486			
Periodo de impartición Teaching Period	1ER CUATRIMESTRE	Tipo/Carácter <i>Typ</i> e	ОВ	
Nivel/Ciclo Level/Cycle	MÁSTER	Curso Course	1	
Créditos ECTS ECTS credits	3			
Lengua en que se imparte Language of instruction	ESPAÑOL			
Profesor/es responsable/s Responsible Teacher/s	César Barrios Collado			
Datos de contacto (E-mail, teléfono) Contact details (e-mail, telephone)	cesar.barrios@uva.es			
Departamento Department	Ingeniería Energética y <mark>Fluidomecánica</mark>			
Fecha de revisión por el Comité de Título	30 de junio de 2025			
Review date by the Degree Committee		(3	N	

En caso de guías bilingües con discrepancias, la validez será para la versión en español. In the case of bilingual guides with discrepancies, the Spanish version will prevail.

1. Situación / Sentido de la Asignatura

Course Context and Relevance

1.1 Contextualización

Course Context

Esta asignatura se imparte en el primer cuatrimestre del primer curso y parte de las competencias desarrolladas en las asignaturas básicas de los grados que dan acceso al máster.

La materia se estructura en tres bloques correspondiendo a los tres tipos de sistemas de producción de electricidad que utilizan máquinas hidráulicas: hidráulica, eólica y marina. En cada bloque temático se describe la evaluación de los recursos energéticos y las instalaciones e infraestructuras de producción energética, insistiendo en la cadena de conversión de energía desde el recurso hasta la red eléctrica.

1.2 Relación con otras materias

Connection with other subjects

Dinámica de fluidos computacional aplicada a tecnologías energéticas Aspectos avanzados en máquinas hidráulicas para sistemas energéticos

1.3 Prerrequisitos

Prerequisites

Para un adecuado seguimiento de la asignatura, es preciso un dominio suficiente de:

- Termodinámica
- Ingeniería Fluidomecánca

Así como:

- Comprensión y dominio de los conceptos básicos sobre las leyes generales de la física.

Universidad de Valladolid

2. Resultados del proceso de formación y de aprendizaje (RD 822/2021) o competencias (RD 1393/2007)

Learning outcomes (RD 822/2021) or competences (RD 1393/2007)

2.1 (RD822/2021) Conocimientos o contenidos

Knowledge or content

CÓDIGO	DESCRIPCIÓN
CO1	Conocer los instrumentos de medida de variables termofluidomecánicas y comprender sus principios de medida. Ser capaz de evaluar las especificidades que, con relación a su comportamiento, tienen diferentes sistemas energéticos con la finalidad de definir sistemas de medida, actuación y estrategias de funcionamiento apropiadas.
CO3	Ser capaz de analizar eficazmente la información contenida en las curvas características y otra información técnica que determina el comportamiento de dispositivos electroquímicos, motores térmicos, máquinas hidráulicas, equipos térmicos y redes de transporte de energía desde criterios de eficiencia energética. En el diseño de instalaciones energéticas complejas, identificar las tecnologías energéticas convencionales y nuevas unidas a la Transición Energética, más idóneas su tamaño y estrategias de integración.
CO4	Capacidad de seleccionar y dimensionar sistemas de almacenamiento de energía. Ser capaz de valorar las características de los diferentes sistemas de almacenamiento para su integración en instalaciones energéticas. Comparar y seleccionar sistemas de almacenamiento comerciales para dar respuesta a necesidades concretas de aplicación.
CO6	Conocimiento de normativas y metodologías relativas a la instalación y seguridad de operación relacionadas con la utilización de nuevos combustibles y tecnologías energéticas. Entender las normas y aspectos regulatorios relativos a tecnologías y vectores energéticos propios de la transición energética. Conocer las metodologías relacionadas con la seguridad y control de atmósferas explosivas.

2.2 (RD822/2021) Habilidades o destrezas

Skills or abilities

CÓDIGO	DESCRIPCIÓN
H1	Saber seleccionar de forma idónea sistemas e instrumentos de medida y definir estrategias de
	control para instalaciones energéticas conc <mark>reta</mark> s.
НЗ	Saber seleccionar y dimensionar elementos, equipos y sistemas de transformación energética
	para implementarlos en instalaciones energéticas concretas.

2.3 (RD822/2021) Competencias


Competences

2.1 (RD1393/2007) Competencias Generales

General Competences

2.2 (RD1393/2007) Competencias Específicas

Specific Competences

3. Objetivos

Course Objectives

Para cada recurso energético aprovechable mediante máquinas hidráulicas (hidráulico, eólico y marino):

- Comprender el origen del recurso.
- Aprender las técnicas de evaluación del recurso.
- Conocer los tipos de instalaciones de producción eléctrica.
- Conocer la cadena de conversión de energía desde el recurso en bruto hasta la red eléctrica.
- Dimensionar instalaciones.

4. Contenidos y/o bloques temáticos

Course Contents and/or Modules

Bloque 1: Energías hidráulica, eólica y marinas

Module 1: Hydroelectric, wind and marine energies

Carga de trabajo en créditos ECTS: 3
Workload in ECTS credits:

a. Contextualización y justificación

a. Context and rationale

Este bloque se contextualiza en la necesidad de dotar al alumno de conocimientos sobre las energías hidráulica, eólica y marinas.

b. Objetivos de aprendizaje

b. Learning objectives

Asimilación de conceptos sobre las energías hidráulica, eólica y marinas.

c. Contenidos

c. Contents

Tema 1. Energía hidráulica

Consideraciones históricas

Fundamentos de la energía hidráulica

Tipos de centrales hidráulicas

Recursos hídricos. Potencial hidroeléctrico

Obra y equipamiento hidráulico

Fundamentos de turbinas hidráulicas

Clasificación y descripción de las turbinas hidráulicas

Particularidades de las turbinas hidráulicas: parámetros adimensionales, velocidad de embalamiento, selección y rendimiento

Cavitación

Tema 2. Energía eólica

Consideraciones históricas

Fundamentos de la energía eólica: Ley de Betz

Perfil aerodinámico. Flujo rotante

Recursos eólicos

Aerogeneradores. Clasificación. Curvas características

Cálculos energéticos

Parques eólicos

Construcción de aerogeneradores

Tema 3. Energías marinas

Consideraciones iniciales

Energía mareomotriz

Turbinas marinas

Energía undimotriz

Energías de gradientes térmico o salino

d. Métodos docentes

d. Teaching and Learning methods

MÉTODOS DOCENTES	OBSERVACIONES
Clases de aula teóricas	Método expositivo en aula, desarrollando los contenidos teóricos de la asignatura.
Clases de aula de problemas	Resolución de problemas específicos de cada tema, que se presentan habitualmente en los procesos de ingeniería.
Prácticas de laboratorio	Aprendizaje mediante experiencias, analizando el comportamiento de los procesos y entrega de memoria de prácticas
Trabajo	Realización de un trabajo en grupo aplicando los conocimientos vistos en la asignatura.
Tutorías docentes	Desarrolladas individualmente o con pequeños grupos de alumnos.

e. Plan de trabajo

e. Work plan

Tema	Título del tema	Teoría (horas)	Aula (horas)	Seminario (horas)	Laboratorio (horas)
Tema 1	Energía hidráulica	7.5	3	7/	2.5
Tema 2	Energía eólica	6	2		3 ///
Tema 3	Energías marinas	1.5		. 10	XX 5/7
	TOTAL	15	5	ADD.	2.5

f. Evaluación

f. Assessment

La evaluación de la asignatura se encuentra recogida en el apartado 7 de esta guía docente.

g Material docente

g Teaching material

g.1 Bibliografía básica

Required Reading

Turbomáquinas Hidráulicas. Mataix, C Ed. Dossat. 1976.

Renowable Energy Engineering, Nick Jenkins, Janaka Ekanayake, Cambridge 2017 Wind Turbine Technology, A.R. Jha, CRC Press, 2011

A.N. 311a, ONO 1 1033, 2011

Ocean Wave Energy, Joao Cruz, Springer, 2008

g.2 Bibliografía complementaria

Supplementary Reading

g.3 Otros recursos telemáticos (píldoras de conocimiento, blogs, videos, revistas digitales, cursos masivos (MOOC), ...)

Additional Online Resources (microlearning units, blogs, videos, digital journals, massive online courses (MOOC), etc.)

h. Recursos necesarios

Required Resources

Se usará el Campus Virtual para proporcionar al alumno materiales y recursos.

i. Temporalización

Course Schedule

CARGA ECTS	PERIODO PREVISTO DE DESARROLLO	
ECTS LOAD	PLANNED TEACHING PERIOD	
3	Semanas 1-14	

5. Métodos docentes y principios metodológicos Instructional Methods and guiding methodological principles

MÉTODOS DOCENTES	OBSERVACIONES
Clases de aula teóricas	Método expositivo en aula, desarrollando los contenidos teóricos de la asignatura.
Clases de aula de problemas	Resolución de problemas específicos de cada tema, que se presentan habitualmente en los procesos de ingeniería.
Prácticas de laboratorio	Aprendizaje mediante experiencias, analizando el comportamiento de los procesos y entrega de memoria de prácticas.
Trabajo	Trabajo escrito en pequeños grupos que además deben presentar públicamente.
Tutorías docentes	Desarrolladas individualmente o con pequeños grupos de alumnos.

6. Tabla de dedicación del estudiantado a la asignatura

Student Workload Table

ACTIVIDADES PRESENCIALES o PRESENCIALES o A DISTANCIA ⁽¹⁾ FACE-TO-FACE/ ON-SITE or ONLINE ACTIVITIES ⁽¹⁾	HORAS HOURS	ACTIVIDADES NO PRESENCIALES INDEPENDENT / OFF-CAMPUS WORK	HORAS HOURS
Clases teóricas	15	Estudio y trabajo autónomo individual	36
Clases prácticas	5	Estudio y trabajo autónomo grupal	16.5
Laboratorios	2.5		
Prácticas externas, clínicas o de campo			
Seminarios			
Otras actividades			
Total presencial Total face-to-face	22.5	Total no presencial. Total non-face-to-face	52.5
		TOTAL presencial + no presencial Total	75

⁽¹⁾ Actividad presencial a distancia es cuando un grupo sentado en un aula del campus sigue una clase por videoconferencia de forma síncrona, impartida por el profesor. Distance face-to-face activity refers to a situation in which a group of students, seated in a classroom on campus, attends a class via live videoconference delivered by the instructor in real time.

7. Sistema y características de la evaluación

Assessment system and criteria

INSTRUMENTO/PROCEDIMIENTO ASSESSMENT METHOD/PROCEDURE	PESO EN LA NOTA FINAL WEIGHT IN FINAL GRADE	OBSERVACIONES REMARKS
Prueba escrita final	60%	Cuestiones y/o problemas sobre toda la materia.
Prácticas de laboratorio	10%	Trabajo con diferentes equipos en el laboratorio y realizar una memoria de prácticas
Trabajo	30%	Escribir y presentar públicamente un trabajo sobre una central hidroeléctrica

CRITERIOS DE CALIFICACIÓN ASSESSMENT CRITERIA

- Convocatoria ordinaria. First Exam Session (Ordinary)
 - o Los de la tabla anterior.
- Convocatoria extraordinaria(*) Second Exam Session (Extraordinary / Resit) (*):
 - Los de la tabla anterior.
- Convocatoria extraordinaria fin de carrera:
 - Prueba escrita con cuestiones de tipo teórico y/o práctico y/o problemas y un peso del 100%
- (*) Se entiende por convocatoria extraordinaria la segunda convocatoria.

RECORDATORIO El estudiante debe poder puntuar sobre 10 en la convocatoria extraordinaria salvo en los casos especiales indicados en el Art 35.4 del ROA 35.4. "La participación en la convocatoria extraordinaria no quedará sujeta a la asistencia a clase ni a la presencia en pruebas anteriores, salvo en los casos de prácticas externas, laboratorios u otras actividades cuya evaluación no fuera posible sin la previa realización de las mencionadas pruebas."

https://secretariageneral.uva.es/wp-content/uploads/VII.2.-Reglamento-de-Ordenacion-Academica.pdf

8. Consideraciones finales

final remarks

